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Effect of interphase modulus and cohesive 
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The effect of interphase modulus and cohesive energy on critical fibre length in short-fibre 
reinforced brittle composites has been investigated employing computer simulation. The 
simulation consists of a two-dimensional computer model based upon a discrete network of grid 
points. Failure is defined in terms of an energy criterion, where the energy is calculated on the 
basis of a two- and three-body interaction between the grid points. Simulation results show that 
for a whisker-type fibre, a thick interphase (i.e. Ai > Af where A represents the cross sectional 
area) with an elastic modulus less than that of the matrix in combination with an increased 
interphase toughness greatly reduce the critical aspect ratio, for both metal-matrix and 
ceramic-reinforced brittle polymer composites. The results also show a variation in the failure 
mode from tensile failure in the matrix to tensile and shear failure in the interphase as a function of 
the fibre-interphase modulus ratio. In particular, a significant increase in the load transfer 
efficiency in metal-matrix composites is found, for an interphase modulus E~ less than the matrix 
modulus Era. Better load transfer properties in metal-matrix composites cause the yield point to 
occur at higher values of applied strain, and hence may significantly increase the toughness (area 
under the stress-strain curve) for certain metal-matrix composites. The computer results are 
compared with the predictions of Cox's shear-lag theory as well as with a new theoretical 
development presented in this work. The new theory is found to provide a better description of the 
fibre and matrix stress distribution. 

1. Introduction 
The critical aspect ratio in fibre composites is a tech- 
nologically important concept. A fibre whose aspect 
ratio is greater than the critical value strengthens the 
composite, while a fibre whose aspect ratio is less than 
the critical aspect ratio can degrade the composite. 
The interface between the fibre and the matrix is 
expected to play a critical part in load transfer since 
the load is communicated to the fibre through the 
interface. It is well known that the interface has a sig- 
nificant influence on the integrity of a composite and 
affects strength and Young's modulus in the fibre 
direction, as well as off-axis properties. Moreover, 
interfaces often have a dramatic effect on the tough- 
ness of fibre composites. 

It has been long assumed that the longitudinal 
tensile strength of unidirectional fibre composites de- 
pends on the strength of the fibre and matrix by the 
rule of mixtures (e.g. [1]). Owen [2] observed that the 
longitudinal tension failure surface of surface-treated 
carbon fibre composites was brittle, while the un- 
treated composites had a broom-like fracture surface. 
His observation suggested that the interface strength 
affects the failure mode and strength in the longitud- 
inal tensile test, and this behaviour is not accounted 
for by the rule of mixtures. It is now known [3] that 
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the failure of a composite involves not only the frac- 
ture of the load-bearing fibres and the matrix, but also 
involves the propagation of a set of cracks along the 
interfaces. It is therefore important to understand the 
properties of the interface and role in controlling frac- 
ture. Interracial strength characterization and the 
study of adhesion mechanisms have consequently re- 
ceived a lot of attention. 

The interracial strength has been mainly character- 
ized by the single-fibre "pull-out" test [4] pioneered 
by Favre [5], and used by that author [6] to deter- 
mine the interfacial shear stresses for glass, carbon 
and Kevlar. Another established test is the single-fibre 
composite test or fragmentation test [7]. Using this 
test, Rao and Drzal [8] found a strong dependence of 
the interfacial shear strength on the bulk material 
matrix properties. Recently, two methods have been 
added to this series of tests: the microdebonding test 
[9] of Mandell et al. [10], where a shear-lag analysis 
including an interphase has been developed [11] and 
the microcompression or "push-in" test [12]. The ex- 
perimental and analytical methods for the measure- 
ment of fibre-matrix interracial shear strength have 
been reviewed in the literature [13-15]. In particular, 
Piggott [ 16] discussed the difference between the frag- 
mentation test and the fibre pull-out test, i.e. fibre 
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pull-out yields interfacial shear strength information 
as opposed to the fragmentation test which mostly 
provides frictional information. He also suggested that 
the criterion for interface failure in carbon epoxy, 
glass epoxy and glass-polyester resins is controlled 
by energy rather than by stress. 

The various mechanisms of adhesion depend 
strongly on the nature of bonding, which in turn is 
influenced by the atomic arrangement and chemical 
properties of the fibre as well as by the molecular 
conformation of the matrix [3]. The chemical, phys- 
ical and mechanical properties of various fibres and 
resin matrices have been discussed elsewhere [17]. 
The peel test [18] has been widely used to determine 
adhesion strength. Several elastic analyses of the peel 
test have been proposed in the literature (e.g. [19, 20]) 
where the peel force is directly related to the adhesive 
fracture energy. Recently, other analyses of the peel 
test have been given in which elastoplastic [21], vis- 
coelastic [22] and inelastic [20] deformations are in- 
cluded. Adhesion has also been studied in relationship 
with the interfacial shear strength. Nardin and Schultz 
[23] observed a linear relationship between interfacial 
shear strength and the reversible work of adhesion. 
Asloun et al. [24] found that poor adhesion drastically 
reduced the effectiveness of load transfer from the 
matrix to the fibre. Most adhesion studies are prim- 
arily concerned with interfacial interactions (physical 
and chemical) and tend to neglect the matrix itself. 
Few experiments have been done in which the inter- 
facial chemistry remains the same but the matrix 
properties are systematically varied [8]. 

The first theoretical analysis of load transfer was 
developed by Cox [25] and is referred to as the shear- 
lag analysis. The interracial shear stress ~i predicted by 
Cox's shear-lag theory is 

Ti = 2\Em] O ' m \ c ~ ) J  (1) 

where 13 is defined as 

= \ E f l n ( R / r f ) J  (2) 

Here z is a coordinate running along the fibres length 
- L /2  <. z <~ L/2,  Ef and E m a r e  the elastic moduli of 

the fibre and the matrix, respectively; Gm is the shear 
modulus of the matrix, (3 m is the stress applied to the 
matrix at a distance R from the fibre, L is the length of 
the fibre and rf its radius. The square-root dependence 
of ~i has been shown to hold in single-fibre pull-out 
tests [26]. Rosen [27] analysed the shear stress field 
along the fibres in a composite loaded in tension. His 
model consisted of a fibre surrounded by a matrix, 
which in turn is embedded within a composite mater- 
ial exhibiting average properties. The fibre and the 
average material are assumed to carry the load, while 
the matrix transmits shear stresses only. Dow [28] has 
evaluated the case where load is applied to both fibre 
and matrix. He obtained expressions for the tensile 
stress i n  the fibre and in the matrix close to the 
fibre-matrix interface and for the shear stress at the 
fibre-matrix interface, but with no intermediate inter- 
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phase present. As the fibres are usually considered to 
have a uniform strength, Rosen [29], Kelly and 
Davies [30] and Tyson and Davies [31] introduced 
later some probabilistic aspects as well as allowed for 
plastic deformation of the matrix to take place. Pig- 
gott [32] proposed a theory in which the deformations 
at the fibre tips are perfectly plastic, while the defor- 
mations at the centre of the fibre are perfectly elastic. 
The above theoretical treatments are used for the 
analysis of most experimental results. Recently, Wag- 
ner and Eitan [33] have argued and experimentally 
verified that if the distance between the fibre flaws are 
assumed to follow a Poisson distribution, the statist- 
ical distribution of fragment lengths follows a shifted 
exponential distribution far from saturation and an 
approximately exponential distribution at the satura- 
tion limit. The saturation limit is defined in the context 
of the fragmentation test as the point at which no 
further fragmentation of the fibre occurs. 

Some numerical work has also been undertaken to 
study the effect of interfaces in fibre composites. Two- 
dimensional [34, 35] and three-dimensional [36] 
finite-element analyses have been used. These methods 
assume zero interface thickness and uniform homo- 
geneous matrix properties. Shih and Ebert [37] found 
numerically that an interface strong in shear increases 
the longitudinal tensile stress of the composite, espe- 
cially in the case of a distribution in fibre failure 
strengths or a small coefficient of friction between the 
debonded fibre and the matrix. Termonia [38] found 
using a finite difference technique that fibre coating 
decreases the stress concentration and improves load 
transfer in the case of poor adhesion between the fibre 
and the matrix. He also found that adhesion has 
a strong influence on load transfer. 

Recently, several researchers have suggested that 
the volume of material immediately surrounding the 
fibre is significantly different from the bulk matrix (for 
example, see Milder and Freitag [4] for an illustration 
of the concept of interphase) and the importance of 
this interphase, or mesophase has been lately recog- 
nized [39, 40]. However, in spite of a large amount of 
experimental, theoretical and numerical effort, the 
properties of the interphase, as well as its role in 
composites, are not very well known or understood. 
This can be attributed in a large part to the fact that 
the results from the interfacial characterization tests 
described above are strongly dependent on many fac- 
tors such as the specimen geometry, the fibre matrix 
volume ratio, the fibre aspect ratio, sizing agents, etc. 
In particular, problems inherent in the fragmentation 
test have been discussed recently [41]. The ultimate 
goal is certainly to obtain an overall understanding of 
the role of mesophases in composites, i.e. to character- 
ize this mesophase as well as to predict interracial 
shear strengths as well as composite properties such as 
toughness, strength (load transfer), etc. from the fibre, 
matrix and mesophase properties. 

In this work, we study the effect of interphase 
modulus and cohesive energy on the load transfer 
properties, namely the critical aspect ratio of elas- 
tic-brittle composites. Our study is based upon 
a shear-lag type analysis and computer simulations. 



Computer simulations possess the advantage of being 
ideal, well-controlled environments. The computer 
model being considered consists of a coarse-grained 
system on a two-dimensional triangular lattice with 
perfect elastic forces between the nodes. The forces are 
derived from a Hamiltonian featuring two- and three- 
body interaction terms. The model has been described 
in detail elsewhere [42]. A cohesive energy parameter 
is incorporated into this study as a generalized frac- 
ture criterion [42], i.e. a bond is allowed to break if its 
energy U is greater than or equal to the bond cohesive 
energy Ub. Such a criterion does not restrict the failure 
mode to pure tensile, shear or compression but allows 
one to access a failure surface as a function of tensile, 
shear and compression stresses as well as competition 
between these various failure modes. The cohesive 
energy parameter therefore enables us to make use of 
fracture information in our study of load transfer. 

We present in section 2 a generalized theory of load 
transfer based on a shear-lag type analysis, which 
includes an interphase region between the matrix and 
the fibre. The theory of Cox [25], Dow [28], Rosen 
[27] and Tsai et al. [11] can be obtained from the 
above-mentioned theory as particular cases. We 
briefly describe in section 3 the computer model used 
in this study and discuss the simulation data. Section 
4 summarizes the results, states our conclusions and 
briefly outlines future work. 

2. Theory 
The first part of this section outlines a general theory 
based on a shear-lag type approach for a three-phase 
composite material made of a single fibre plus an 
interphase region embedded in a soft matrix. All three 
phases carry both tensile and shear stresses. 

Fig. la illustrates a cross-section in the z - y  plane of 
the system considered: a composite material in the 
dilute limit, in which a single fibre is embedded in 
a large volume of matrix, with an interphase region in 
between, ze is the shear stress at the fibre-interphase 
surface, zi the shear stress at the interphase-matrix 
surface and Zm the shear stress in the matrix at a dis- 
tance rm. re is the radius of the fibre, ri is the radius of 
the fibre plus interphase region and rm represents 
a distance chosen far away in the matrix. Fig. lb is 
a sketch of the deformations in the composite material 
presented in Fig. la. The deformations are exaggerated 
for the sake of clarity, since the total strain applied to 
the composite material never exceed 2%. ff, fi and fm 
define a set of three surfaces where the shear stress is 
assumed to be zero in the fibre, interphase and matrix 
as shown in Fig. lc, which illustrates a cross-section in 
the x - y  plane of the composite material. The forces 
exerted on the fibre, interphase and matrix within 
a distance r = rm are carried as tensile stresses only 
along these surfaces, i.e. ~e(z)= cy(z, ff), % ( z ) =  
c~(z, ri) and CYm(Z) = C~(Z, rm), and as shear stresses in 
between these surfaces. 

The first equation is obtained by balancing the 
applied force on the fibre, interphase and matrix with 
the total applied force Fapl:  

Fe + F i  -I- Fm = Fapl 

o r  

Af f f f ( z )  q- A i f f i ( z  ) -1- ZmO'm(Z ) = ZoO'ap 1 (3) 

where Af --  rtr~, Zi = ~(r 2 - r2f ), Am = ~(rZm -- r~) 
and Ao = Af + Ai + Am = nrZm. The second set of 
equations is obtained by balancing the tensile and 
shear stresses: 

dF(z ,  ff) doff(z) 
-- Af -- 2rcrfzf(z) (4) 

dz dz 

dF(z, ri) dcYi(z) 
--  A i - 21 t [ r i z i ( z  ) - -  r f ' c f (z) ]  

dz dz 

(5) 

dF(z ,  rm) d~ 
- A m - -  

dz dz 

= - 2n[rmZm(Z) -- rlzi(z)] (6) 

where z f ( z ) -  r(z, rf), zi(z) -- z(z,  ri) and rm(Z)-- 
z(z,  rm). Note that in order for Equations 4-6 to be 
consistent with Equation 1, rm must be set to 0. This 
means that the distance rm must be chosen to be large 
enough so that beyond r m the material does not "feel" 
the effect of the fibre, i.e. for r >_ rm the displacement 
u(z, r) is equal to the applied displacement. 

The most general expressions for the shear stresses 
~f and ~i are obtained in the following way: using 
the relations r~(z, r) = rf~(z, rf)  for if < r _< rf and 
Z(Z, r) = Gfdu(z, r)/dr where Gf is the shear modulus 
of the fibre, and integrating 

rf/f(Z - d r  = Gf du 
,] rf r du(z ,  rr) 

with the result 

Te(Z) = Gf(u(z, ff) -- u(z, rf)) 
r~- ln(tZf/rf) (7) 

Similarly, for rf _< r < ri 

zf(z)  = Gi(u(z' f i)  - u(z'rf)) 
rf  Vn( /r  

and for fi < r _< ri 

"~i (Z)  

and finally for ri _< r < fm 

Zi(Z) = Gin(u(z'fm) - u ( z ' r i ) ) r i  ln (Fm/r l )  (10) 

Before we proceed to solve the above equations, we 
show how to recover some of the shear-lag theories in 
the literature. 

2.1. Two-phase theories: fibre and matrix 
2. 1.1. Cox shear-lag theory 
This theory [25] is concerned with one single fibre 
embedded in a softer matrix. The matrix carries both 
tensile and shear stresses. The tensile stress in the 
matrix is assumed to be constant and equal to the 
applied stress, which is a rather rough approximation. 
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Figure 1 (a) Sketch of y - z  cross-section of the composite material. 
Cylindrical symmetry is assumed with r = (x 2 + y2) 1/2 therefore 
only the part y _> 0 is shown, rr is the distance from the centre of the 
fibre to the boundary between the fibre and the interphase region, 
and r~ the distance from the centre of the fibre to the boundary 
between the interphase region and the matrix, rm is defined as 
a distance far away in the matrix beyond which the stress (or strain) 
is equal to the applied stress (or strain), vf is the shear stress at the 
boundary between the fibre and the interphase region. ~ is the shear 
stress at the boundary between the interphase region and the matrix 
while "~m is the shear stress at a distance rm in the matrix. The fibre 
has a length L. (b) Sketch of the deformation (maximum 2%) in the 
composite material shown in Fig. la (y-z  cross-section). The shear 
stresses at these locations are consequently null: ~(z,?f)= 
"c(z, r i )=  "c(z, rm)= 0. u'(z, (f), u'(z, rl) and u'(z, l~m), are the dis- 
placements at r = ~f, ~ and ?m, and are respectively equal to 
cyf(z)/Ef, cyi(z)/Ei and ~m(z)/Em. u(z, rf), u(z, ri) and u(z, rm) are the 
displacements at r = rr, r~ and rm, with rf, r~ and rm defined in Fig. 
la. (c) Sketch of x - y  cross-section of the composite material, rf, r~ 
and rm are previously defined in Fig. la. It is assumed that the fibre, 
interphase and matrix carry the applied force as tensile stresses 
along the surfaces r ~ rf, ri and rm (dashed lines), and as shear 
stresses in between these surfaces. 
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The fibre carries only tensile stress and this should be 
valid for whisker-like fibres: 

(i) There is no interphase region, hence we discard 
Equation 5 and relabel zi + Ze and ri = fi -~ re. Equa- 
tions 8 and 9 are also discarded. 

(ii) (3 m = O ' a p  I ~ - c o n s t a n t ,  in which case Equation 
6 gives rfze(z) = rmZm(Z). 

(iii) Since the forces are no longer balanced, Equa- 
tion 3 must be discarded. "c m is not necessarily null. 

(iv) The fibre carries only tensile load: fe = re, and 
Equation 7 does not apply. 

Equation 4 remains the same and zf is given by Equa- 
tion 10: 

~Cf(Z) = a~m (urn(Z) = Uf(Z) 
re \ ln(rm/rf) /I 

where uf(z) =- u(z, re), Urn = U(Z, rm) and for simplicity, 
f m +  rm. One then obtains the well-known results for 
the fibre tensile stress eye and interracial shear stress zf: 

eYe(Z) = EffIaPl- (1 cosh(~z/rf) 
E m cosh([3L/2rf)] (11) 

"Q(Z) -- ~EfO'apl (1 sinh([3z/re) "~ 
2Em cosh([3L/2rf)f (12) 

and [3 is given by Equation 2 with r m replacing R. Note 
that the boundary conditions 13"f ( - -  L/2) = ere (L/2) = 0 
have been used. 

2. 1.2. D e w  shear- lag theory  
This theory [28] is also for the case of a single fibre 
embedded in a softer matrix. The matrix carries both 
tensile and shear stresses, but the tensile stress in the 
matrix is allowed to have an axial dependence 
s ~- O'm(Z)" The fibre can carry tensile as well as shear 
stress, hence the Dew theory is not only restricted to 
whiskers: 

(i) There is again no interphase region. Equation 
5 is discarded and we relabel ~i ~ zf, ri --* re, ri ~ re and 
G~ ~ Gf. Hence Equations 7 9 are equivalent. 

(ii) The forces are balanced, and by Equation 3 
"1: m : 0. 

Equation 4 remains the same, while Equation 5 be- 
comes 

dF(z, fm) dcYm 
dz - Am dz - 2r~rfze 

Equations 7 9 become 

(u(z ,  rf) -- u(Z, fe)) 
"Of = G e rf r-f 

and Equation 10 becomes 

(U(Z, rm) -- u(z, rf)) 
Tf : a m r-m -- rf 

Dew takes the square root of the second moment  of 
the mass distribution of the fibre and the matrix for ff 

and ~m: 

=m 

(~ r2 pfdVf)  1/z = 

f~r2pmdVm~ 1/2 (r2mq-r2)  1/2 

with r = ( x 2 - }  - 22) 1'2 and uniform fibre and matrix 
densities pf = Mf/(2rcr2L), Pm = Mm/[2rc(r 2 -- rZ)L]. 
Mf is the mass of the fibre, Mm is the mass of the 
matrix and L is the sample length. He assumes fur- 
thermore that the deformation remains close to 
a straight line. This is true if ff/rr, re/fro ~ 1 so 
rein(re/re) ,~ -- (re -- re) --= -- re, and rfln(rm/rf) = 
?m -- re = ~m. Dow then obtains the following expres- 
sions for the tensile stress in the fibre and matrix: 

A~ ~ Ef ( l  cosh(~z/re) ~i 
(Tf(z) = AfEe -I- AmE m cosh()~L/2rf)] 

(13) 

Ao (Yapl 
% ( Z )  : 

Am(AlE e -]- AmEm) 

( cosh()~z/rf) ) 
x AfEf cosh()~L/2rf) + AmEm (14) 

~ (  AoCYaplE f ~ sinhOvz/rf) (15) 

"Q(Z) ~- ~ ~AfE~ff ~ ~m-mEm/cosh(KL/Zrf) 

~, = [2~rf3 ( ? m a f  
[_ \~f(Jrn + rm(Je// 

x + (16) 

The following boundary conditions have been used: 
of( - L/2) = ~f(L/2) = 0 and Ore( -- L/2) = O'm(L/2) 
= AoUapl/Arn. 

2.2. Three-phase theories: fibre, interphase 
and matrix 

2.2. 1. The theory of Tsai, Arocho and Gause 
Tsai et al. [11] developed this theory for their fibre 
pull-out experiments; it is a generalization of Cox's 
shear-lag theory for which an interphase is added. The 
interphase and the matrix carry both tensile and shear 
stresses and the tensile stresses are assumed to be 
constant. The fibre carries only tensile stress: 

(i) (3" m = (:Yap l ~ cons tan t  and  f rom Equation 6, 
FiT i ~ rmT. m. 

(ii) ~ i -  constant which gives rivi = rf~f from 
Equation 5. 

(iii) Since the forces are no longer balanced, Equa- 
tion 3 must be discarded and Zm -~ 0. 

(iv) ff = re, ri = rl and Zm = rm; hence Equations 
7 and 9 are also discarded. 

Equation 4 remains, while Equation 8 becomes 

zf(z) = Gi (u(z,  rl) -- u(z, ln(ri/rf) 
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and Equa t ion  10 becomes 

zi(z) = Gm(u(Z,  rm) - u(z, ri) ) 
ri \ ln(rm/ri) 

One can solve for of(z) and ~f(z) to obta in  

Of(Z) -- EfO'apl (1 cosh(o~z/rf) "] 
E m c ~ ) /  

= ~Ef  O'apl ( sinh(az/rf)'~ 
2Em \cosh(o~L/2re)J 

~,(z) 

where 

(17) 

(18) 

\Ef[Gmln(rjrf) + Giln(rm/ri)]J (19) 

with " q ( z ) = T f ( z ) r f / r  i and " ~ m ( Z )  = Tf ( z ) r f / r  m. The 
b o u n d a r y  condit ions cyf( - L/2) = cyf(L/2) = 0 have 
been used again in this case. 

2.2.2. The shear-lag based approach of 
Rosen 

This theory [27] was originally for the case of a fibre 
(f) embedded  in a matr ix  (m) which in turn is embed-  
ded in a phase (a) displaying the average propert ies  of  
the composi te  material .  For  the purposes  of a single 
fibre with an interphase embedded  in a matrix,  we 
relabel the indices m and a to i and m. The fibre and 
the average  mater ia l  carry tensile stresses only. The 
interphase can carry both  tensile and shear stresses, 
but the tensile stress is assumed constant  or null: 

(i) The forces are balanced,  and by Equa t ion  3 
z m = 0. 

(ii) oi - constant ,  or is even null, according to the 
hypothesis  that  only the matr ix  and the fibre carry 
tensile load. By Equa t ion  5, rfze = qq  with ~ = ri. 
Consequent ly,  Equat ions  9 and 10 are discarded. 

(iii) The fibre does not  carry  shear stress, ff = rr and 
Equa t ion  7 is discarded. 

(iv) Emdu(z, ri)/dz = o" m = (Yapl ---- constant.  

Equa t ion  4 remains the same and Equa t ion  8 becomes 

Tf(Z) = G i ( u ( z ' r i ) - u ( z ' r f ) )  
rf \ ln(ri/rf) 

and one finally obtains  

2Gicraplr 2 
of(z) g2Emln(ri/rf)(r2m _ r2 ) 

X (1 cosh(I.tz/rf) 
c ~ f ) , /  (20) 

GiO.p,r 2 (sinh(laz/rf) "~ 
zf(z) = gEmln(ri/rf)(r2 _ r] ) \ c ~ ) J  (21) 

where 

Ef ~" 2G i i 1  ~ m ( r 2  rf2 ~ 1 / 2  
= (Efln(ri/rf) + -- r~fl]J (22) 

and cyf( - L/2) = of(L/2)  = 0. 
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2.2,3. General solution 
We now solve for oi, of,  O'm, "~f and T i in the general 
case, with no other  assumpt ion  than ~'m = 0. We use 
Equat ions  7 and 8 to obta in  an expression for u(z, re): 

Gfln(ri/rf)u(z, rf) + Giln(rf/Ff)u(z, Fi) 
u(z, rf) = 

Gfln(fi /rf)  + Giln(rf/Ff) 
(23) 

and Equat ions  9 and 10 to obtain  an expression for 
u(z, r0: 

Giln(Fm/ri)u(z, ri) + Gmln(rjfi)u(z, rm) 
u(z, ri) = 

Giln(fm/ri) + Gmln(rjFO 
(24) 

Substi tut ing Equat ions  23 and 24 into Equat ions  
7 and 9 for zf and ~i and substi tuting the expressions 
obta ined into Equat ions  4-6,  we finally obtain  

d 2 Hf Cf 

dz 2 AfEf (uf - ui) (25a) 

d2ui  
= - C~(uf - u i ) -  (7--@(Urn__ Ui) (25b) 

dz 2 AlE i & L i  

d2um C m 

dz  2 AmE m 
(Um -- Ri) (25C) 

where Uf ~ H(Z, rf), U i ~--- U(Z, /7i) , U m ~-~ U(Z, JTm) and 

2~z Gf G i 
Cf = (26a) 

Gfln(?i/rf) + Giln(rf/•) 

2gGi Gm 
Cm = (26b) 

Giln(Fm/ri) + Gmln(rjFi) 

One can rewrite Equat ions  25 in terms of the variables 
u = uf - ui and v =Um -- Ui to obta in  

d2u C m 

dz z - 7f, iu + AiEi v (27a) 

d2v  Cf 

dz  2 A i E  i 
u + 7~,~,v (27b) 

where Yf, i : Cf[(1/AfEf) + (1/AiEi) ] and Yi, m = Cm 
E(1/AiEi) Jr- (1/AmEm) ], Since uf(0) = ui(0) = Urn(0) ---- 0, 
Equat ions  27 have as solutions u = A i s i n h ( v l z ) +  
Azsinh(v2z)  and v = Bls inh(v~z)  + Bzsinh(vzz) ,  
with 

CfCm x 
V4 -- (')tf, i Jr- ~/i,m) V2 + Yf, iTi, m (AiEi)2j 

V1,2 = 'Yi, f + Ti, m) + 

[ 4 C'Cmy12  
('Yi, f --  Yi, m)2 -1- (AiEi)2]  J 

= 0 

(28a) 

(28b) 

Put t ing back the expressions for u and v into Equa-  
tions 27, one finds that  of the four constants  A1, A2, 



B1 and B2 only two are independent. We choose 

A i E i (  V2 - 7i, f )  Cf  
B1 = - -  

Cm AiEI  

( 1 ) q A ~ ( 2 9 a )  - = 
X [~2-12 Yi, m 

Cm( ' ) 
A2 - AiEi v~ - Yi, f 

--  a i E i (  V2 --"Yi, m) = r  (29b) 
Ce 

A~ and B2 are in turn determined by the follow- 
ing boundary conditiorLs: u}( -- L/2)  = u'e(L/2) = a, 
u'~( -- L/2) = u{(L/2) = 13 and Urn( -- L/2) = urn(L~2) = & 
The prime denotes differentiation with respect to z. 
Consequently 

u ' (L /2 )  = VlAlCosh(vlL/2) 

+ v2~B2eo',;h(vzL/2) = a - -  13 (30a) 

v ' (L /2)  = q v l A 1  cosh(vlL/2) 

+ v2B2co:;h(v2L/2 ) = 8 - 13 (30b) 

By Equation 3, a, 13 and y have to satisfy the relation 

AfEfa + AiEi l  3 -~- AmEm8 = AoO-ap I (31) 

We therefore obtain expressions for A1 and B2 in 
terms of <z, 13 and 7: 

~,(~- 13) - ( ~  - 13) A1 = (32a) 
v l ( r l ~ -  1)cosh(vlL/2) 

n ( ~  - 1 3 ) -  (a  - 13) 
B2 = (32b) 

V2(r l~  - -  1 ) c o s h ( v  2 L / 2 )  

or(z)  = Efu}(z)  is obtained by integrating Equation 
25a and using the boundary conditions for uf: 

oe(z)  = Era  - A I  f l ( z )  + f2 ( z )  (33) 

where al = A1 cosh(vlL/2), be = B2 cosh(v2L/2) and 
fn(Z) = 1 -  c o s h ( v , z ) / e o s h ( v n L / 2 ) ,  n = 1, 2. We go 
through a similar procedure for cy~ and ~m: 

_ q  f l ( z )  + f2 ( z )  (34) 

~Tm[~ll fl(Z) -{- b~2f2(Z) 1 (5"m(Z) = Em~ --  ~ m  

(35) 

One can verify that 

lira of(0) _ lira oi(0) _ lim CYm(0) 
L~co ef L~o0 Ei L~ao e m  

Ao (3"ap 1 

AfEf q- AlE i -+- AmE m 

as it should in the limit of an infinite fibre provided 
that EfAfa + EiAi l  3 + EmAm~ = A o ~ a p  I. W e  finally 
give the expressions for the shear stresses zf and r~: 

Cf ( sinh(vlz) 
"Of(Z) -- 2~rf al cosh(VlL/2 ) 

sinh(v2z) 
+ ~,b2 c o ~ 2 ) ]  (36a) 

--  C m [ sinh(vx z) 
~i(Z) 

2~ri \ q a l  cosh(vl L/2)  

sinh(v2z) "~ 
+ b2 c ~ ) ]  (36b) 

Note that the matrix region can be further divided 
into smaller regions. This "layering" process provides 
a radial dependence for the tensile stress in the matrix 
and obviously, an increasingly large number of layers 
considered in the theoretical equations is expected to 
yield results in closer agreement with real systems, 
i.e. in our case the computer model. In the case of 
N regions considered (a fibre plus the interphase and 
N-2 matrix layers), Equation 27a for v becomes 
a polynomial of order 2(N - 1). The tensile and shear 
stresses in each of these regions are now expressed in 
the following form: 

N~I ( cosh(vjz) .~ 
ore(z) = am + Aj l c o s h ( v ~ L / 2 ) ]  (37a) j = l  

N-1 B sinh(vjz) 
Zm(Z) = ~ J C ~ )  (37b) 

j = l  

where the subscript j labels the different 
regions/phases and N is the total number of re- 
gions/phases. Aj and Bj are amplitudes, functions of Cj 
(for example, Equations 26 are for the case N = 3), 
E j A i ,  vj  and the boundary condition aj values (i,e. the 
values of cyj at z = +_ L/2). 

In order to show the net improvement of our theor- 
etical calculation as the number of layers N is in- 
creased over the original shear-lag theory, we compare 
the tensile stress profile in the fibre and the shear stress 
profile at the fibre-interphase surface for a perfect 
interphase (El = Era) as obtained from Cox shear-lag 
theory, and as obtained from the theory described 
above for N = 3 and N = 4 layers, with the results of 
the computer model taken from previous work [42]. 
Since we are comparing Cox shear-lag theory and our 
theory with the two-dimensional computer results, 
both Cox theory and our theory have been adapted to 
a two-dimensional geometry. Fig. 2 displays, as an 
example of how the various r and ~ parameters are 
chosen, a fibre of length L = 5 (square sites), sur- 
rounded by a perfect interphase (circled Sites), the 
remaining sites (dots) representing the matrix. Accord- 
ing to Fig. 2, ff = 0, ~i = a~ and in the case N = 4, 
rm = 2a~ where a~ = 3!/Za~/2, a unit length in the 
y direction and a~ is a unit length in the x direction 
and a~ -= 1. However, choosing the values for rf, rl, r m 
and ray is not so obvious due to the discrete nature of 
the model. We choose to use the mid-point between 
the f values, i.e. rf = 0.5a~, ri = 1.5a~, (rm =,2.5a~ for 
the case N = 4) and r,v = 24.5a~. fay is taken:to be the 
mid-point between r~ and rav for N = 3, i.e. f,v = 13, 
and the midpoint between r m and ra~ for N = 4, 
i.e. f,v = 13.5. 
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We first consider two systems: one with 
a fibre-matrix modulus ratio Ef/E m = 4.4, while both 
the interface and the matrix have the same elastic 
modulus El = Era, and one with a fibre-matrix 
modulus ratio Ef/Em = 31.1 also with Ei = Era. Fig. 3a 
and b display the tensile stress profile along the fibre 
for a fibre length L -- 40 (comparable to the critical 
length lc found for ratios Ef/Em = 4.4 and 31.1 [42]) as 
obtained from the computer model at the point of 
failure, Cox shear-lag theory, and the present theory 
with N = 3 and N = 4. Fig. 3a is for El~Era = 4.4 while 
Fig. 3b is for Ef/Em = 31.1. Fig. 3c and d display the 
shear stress at the fibre-interphase surface for a fibre 
length L = 40. Fig. 4a and b show the tensile stress 
along the fibre while Fig. 4c and d show the tensile 
stress at the fibre-interphase surface as described 
above for Fig. 3 except that the fibre length is now 
L =  120-~31c. 

Fig. 3 shows clearly the discrepancies between the 
results of Cox shear-lag theory and the computer 
model, as well as the improvement of our calculation 
over Cox shear-lag theory. We compare the results 
from the model and both theoretical calculations 
using three criteria: the value of the tensile stress at the 
fibre mid-point (z = 0), the value of the shear stress at 
the fibre end-points (z = -4- L/2) and the shape of the 
tensile curve. A significant discrepancy in the value of 
the shear stress at the fibre end-points exists between 
Cox shear-lag theory and the computer model. This 
results in a considerable discrepancy in the shape of 
the tensile stress curve (see Fig. 3a and b). A discrep- 
ancy in the shape of the tensile stress, i.e. its degree of 
"flatness", can lead to incorrect estimates of the per- 
centage of the fibre length carrying a stress close to the 
maximum fibre stress cyf(z = 0). For  instance, accord- 
ing to Fig. 3a one estimates this percentage to be 
approximately 10% for Cox shear-lag theory while it 
is approximately 50% in the computer model. The 
differences between Cox shear-lag theory and the 
computer model increase as the elastic modulus ratio 
Ef/Em increases (see Fig. 3b and d); this is consistent 
with the fact that Cox's assumption of a constant 
tensile stress in the matrix O'm(Z , r ) ~  Gap I becomes 
worse as Ef/Em increases. 

In contrast to Cox's theory, our calculation shows 
much better agreement. Our results for the amplitude 
of the shear stress at the fibre ends and for the overall 

Figure 2 Example of ( [] ) a fibre of length L = 5, surrounded by ( | ) 
a perfect interphase and ( �9 ) the matrix sites immediately next to the 
interphase, on a triangular lattice, b l -b5  illustrate the location of 
various bonds which we will refer to in the text. bl is an interphase 
tensile bond, b2 is a matrix tensile bond, b3 is an interphase shear 
bond, b4 is a matrix tensile bond next to the interphase bond bl and 
b5 is an interphase tensile bond next to the fibre end. 
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shape of the tensile stress profile are in very close 
agreement with the computer model results. As one 
may notice in Fig. 3a and b, our theoretical calcu- 
lations for the tensile stress profile seem to converge to 
values slightly higher than those of the computer 
model. Also, the theoretical stress profiles calculated 
from our model in the case of the short fibre (L = 40) 
are slightly higher compared to the case of the long 
fibre (L = 120) (compare Fig. 3a with Fig. 4a and Fig. 
3b with Fig. 4b). These effects can be attributed to the 
fact that the ratio of the fibre length to the linear 
dimension Lx of the system was kept constant, hence 
the system used was proportionally smaller in the case 
of the shorter fibre (L = 40). The discreteness of our 
model introduces rather sharp variations in the stress 
amplification pattern at the fibre tips, especially when 
small systems are used. We then proceeded to input 
the value of the tensile stress at the fibre tips obtained 
from the simulation model into our equations as 
boundary conditions, and this explains why the theor- 
etical stress profiles obtained are slightly higher than 
they should be in the case of the shorter fibre, and the 
excellent agreement between the simulation model 
and our calculation in Fig. 3a is probably fortuitous. 
Finally, the increased discrepancy between Cox's 
shear-lag theory and the computer model results for 
Ef/Em = 31.1 suggests that a greater number of layers 
N need to be considered in our theoretical description 
as the elastic modulus ratio Ef/Em increases. 

As the fibre length L increases (see Fig. 4) the 
function f =  1-cosh(~z) /cosh(~L/2)  in Cox's ex- 
pression for the fibre tensile stress in Equation 11 
becomes length-insensitive for L such that for 
fJL/rf > 5, f ~ 1 and the value of the stress at the fibre 
mid-point simply tends towards the value of the stress 
of an infinite fibre Ere*. Here e* is the composite 
strain at failure. Fig. 4c and d still show a significant 
discrepancy between the amplitude of the shear stress 
at the fibre end-points from Cox shear-lag theory and 
the model, as well as the net improvement of our 
expression for the shear stresses for N = 3 and N = 4 
layers compared with Cox shear-lag theory. However, 
the above-mentioned discrepancy in Cox shear-lag 
theory leads in this case to a lesser difference in the 
shape of the tensile stress in Fig. 4a and b (compare 
with Fig. 3a and b) in the sense that the regions of 
discrepancy (usually close to the fibre ends) represent 
a decreasing percentage of the total fibre length L as 
L increases. Another interesting fact to note is that the 
discrepancy between the maximum shear stress at the 
fibre end-points rf(z = +L/2) from Cox shear-lag 
theory and the computer model (a factor of 2.8 in Fig. 
3c, and of 3.1 in Fig. 3d) is consistent with the experi- 
mentally determined factor of at least 2 cited in the 
literature [43]. 

Our theoretical analysis indicates that the poor 
agreement of Cox and Dow shear-lag theory [3I, 43, 
44] with experimental measurements of shear stresses 
does not seem to be due to the "no-load" boundary 
condition at the fibre ends cyf(z = + L/2) = 0. In fact 
the "no-load" boundary condition is justified in the 
case of chopped fibres, where there is no end-face 
adhesion, and should be good enough in the case of 



0.6 

0.4 

0.2 

' ' ' ' 1  ' ' ' 1 ' ' ' ' 1 ' ' ' '  

5001o 

/ \ 
/ \ 

/ \ 
/ \ 

-20 
(o) 

J i l l  
-10 

I I I 
0 
Z 

I ] l l  
10 

I I 
20 

1.5 

1.0 

I0 

v 

0.5 

' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' ' '  

/ \ 
/ 

o , , , I , J , , [  
-20 -10 0 

(b) z 

\ 

i J i [  
10 

I I I 

20 

0.2 

0.1 

CI 
O-  

0 

-0.1 

_ l , , , I , , , , I , , I , l , , , ,  

..-2~2":~- -'-" ~ --620 . . , , , , . , , , .~  . . , . .  

1 
I . . . . . .  
10 12 14 16 18 20 

i i I i I i J f i I J  J I r  I i i l l  
-lO o lO 

Z 

_ O . z l  i i i ] I I , J I i i I I I ,./.: 

,~ ~ . " J '  

0 ~ ' " ~ ' "  ..... 
. 3  , , , l , , , l , , , f , , , l , , ,  

/ 0.2 / 

-02  

10 12 14 16 18 20 
-0.; 

-20 20 -20 - I0  0 10 20 
(c) (d) z 

Figure 3 (a) Tensile stress profile for a fibre matrix modulus ratio E f / E  m = 4.4 and length L = 40 - lo. The y axis represents the fibre tensile 
stress (%), while the x axis represents the distance z along the fibre with the origin at the fibre mid-point and is in units of the lattice constant 
ao which is arbitrarily set to unity. ( --) Cox's prediction [25], ( - - - )  N = 3 layer model, ( ) N = 4 layer model, (...) computer model. The 
arrows represents the fraction of the fibre length carrying a stress close to the fibre maximum stress for Cox's calculation (10%) and for the 
N = 3 and N = 4 layer model calculation (50%). (b) Same as for (a) but for a fibre-matrix modulus ratio Ef/Em = 31.1. (c) Shear stress profile 
along the fibre-interphase surface for a fibre-matrix modulus ratio Ef/Em = 4.4. The y axis represents the shear stress ('of), while the x axis 
represents the distance z along the fibre (see Fig. 3a). The insert amplifies the region between z = 10 and z = 20. (d) Same as (c) for 
a fibre matrix modulus ratio E f / E  m = 31.1. 

whiskers.  One  can imagine  that  in the l imit  of  a thin 
fibre, the con t r ibu t ion  to the load  transfer  from the 
tensile stress ac t ing on the fibre end-faces becomes  
negligible c o m p a r e d  to the con t r ibu t ion  from the 
shear  stresses act ing a long  the fibre surface as the fibre 
cross-sect ional  a rea  is vanishing.  The d iscrepancy  is 
ra ther  due to the fact that  the mat r ix  tensile stress does  
not  have any radia l  dependence  C ~ m ( Z , r  ) = O'm(Z ) 
(Dow) or  is assumed cons tan t  cy~(z, r) = %vl(COx). In  
fact, the a s sumpt ions  of Cox  and  D o w  are equivalent ,  
since c o m p u t e r  mode l  results show that  the tensile 
stress in the mat r ix  a r o u n d  the fibre possesses a very 
weak axial  dependence  (if one d iscards  the stress am-  
pl if icat ion effects at  the fibre end-points ,  of course) but  
a significant rad ia l  dependence  which is neglected by 
both  theories.  We  therefore conclude  that  Cox shear-  
lag theory  is unable  to p rope r ly  descr ibe the tensile 

and  shear  stress profiles in the case of a single shor t  
fibre e m b e d d e d  in a matr ix.  However ,  the p red ic t ion  
of Cox shear- lag  theory  for the tensile stress profile of  
the fibre is expected to be sat isfactory in the l imit  of 
low elastic modu lus  mismatch ,  or  in the l imit  of very 
long fibres ( typical ly several  t imes longer  than  their  
cri t ical  length) so the regions of d i screpancy  become 
negligible. 

At this point ,  the obvious  th ing to do  is to increase 
the n u m b e r  of  layers for increas ingly  bet ter  results. 
One  soon runs into the fol lowing prob lem,  which is 
the ma in  d r a w b a c k  of our  theore t ica l  development :  
the precise knowledge  of the b o u n d a r y  condi t ions  
~zj(j = 1, N)  as the number  of  layers N in the matr ix  
increases. In o rde r  to genera te  the stress profiles pres- 
ented in Figs 3 and  4, the required b o u n d a r y  condi-  
t ions were taken  from the compu te r  model ,  i.e. the 
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Figure 4 (a) Tensile stress profile along the fibre for a fibre-matrix modulus ratio Ef/E m = 4.4 and length L - 120 --- 31~ (see Fig. 3a). (b) Same 
as (a) but for a fibre-matrix modulus ratio EffEm = 31.1. (c) Shear stress profile along the fibre-interphase interface for a fibre-matrix 
modulus ratio El~Era = 4.4 and length L = 120 (see Fig. 3c above). The insert amplifies the region between z = 50 and z = 60. (d) Same as (c) 
for a fibre-matrix modulus ratio El~Era - 31.1. 

values of ~i(z = +_L/2) for N = 3 and  N = 4, plus 
O'm(Z = +_L/2) for N = 4; ~,v was s imply  taken  to be 
equal  to gmE*, Thus  our  theoret ica l  de r iva t ion  m a y  be 
of phenomeno log i ca l  interest ,  but  it is of lit t le prac t ica l  
use. Cons ide r ing  the fact tha t  these b o u n d a r y  condi -  
t ions canno t  be ob ta ined  from first principles,  and  that  
we were able  to ob t a in  such good  agreement  between 
the c o m p u t e r  mode l  and  our  theore t ica l  deve lopment ,  
we feel conf ident  to resor t  only  to the c o m p u t e r  mode l  
to s tudy  the effect of  in te rphase  elastic modu lus  and  
cohesive energy on the cri t ical  aspect  ratio.  We will 
present  in sect ion 3 the results  from our  c o m p u t e r  
model .  

3. M o d e l  a n d  c o m p u t e r  r e s u l t s  
The mode l  [42] is a coarse -gra ined  spr ing mode l  on 
a two-d imens iona l  t r i angu la r  grid. The H a m i l t o n i a n  
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features a t w o - b o d y  as well as a th ree -body  term: 

H = 
! 

Eij(r, - r + 2 
U 

• ~ c~j,,(cos %,, - cos 0o)2 
irk 

(38) 

where ro = 1 is the equi l ibr ium b o n d  length and 
0o = ::/3 is the equi l ib r ium angle between bonds  for 
a t r i angula r  lattice. E i j  is equal  to Ef if the nodes i and  
j are  bo th  fibre nodes,  to El if the nodes  i and  j are 
ei ther  bo th  in te rphase  nodes  or  one fibre and  one 
in te rphase  node,  and to E m if the nodes  i and  j are 
ei ther both  mat r ix  nodes  or  one mat r ix  and one inter- 
phase  node.  The cons tan ts  cijk = cf if bonds  ij and j k  
are fibre bonds ,  to ci if bonds  ij and j k  are bo th  
in te rphase  bonds  or  one fibre and one in te rphase  
bond,  respectively,  and  to Cm if bonds  ij a n d j k  are bo th  
mat r ix  bonds  or  one mat r ix  and one in te rphase  bond,  
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Figure 5 Critical aspect ratio Sc as a function of the fibre-matrix 
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the x direction. The line does not represent a fit to the data. 

broken if it accumulates an energy equal to or greater 
than its assigned cohesive energy Uf for a fibre bond, 
Ui for an interphase bond and Um for a matrix bond. 

The critical length is defined to be the length at 
which fracture is initiated in the matrix (or the inter- 
phase region) and at the middle of the fibre simul- 
taneously. The "no-load" boundary conditions 
ch(z = +_ L/2) have been used in all theoretical calcu- 
lations since in the computer model, the fibre always 
debonds at the ends before catastrophic failure occurs 
(bonds b5 in Fig. 2 break). A detailed explanation of 
how the critical length is measured is given elsewhere 
[42]. Fracture in the interphase or in the matrix can 
occur via two modes: the breaking of a bond carrying 
tensile stress (tensile mode) or the breaking of a bond 
carrying shear stress (shear mode). The first part of 
this section will show computer  data concerning the 
influence of interphase elastic moduli on the measured 
critical aspect ratio, and will discuss the various 
modes of failure encountered. The second part  will 
show computer  data concerning the influence of inter- 
phase cohesive energy on the critical aspect ratio. 

respectively. The constants cuk ensure that the fibre, 
the interphase and the matrix each have their own 
Poisson ratio. A triangular lattice possesses the fol- 
lowing Poission ratio: 

E~ - 9(G/2r 2) 
v~ = 3E~ + 9(G/2rg) (39) 

and shear modulus ( 9c ) 
G~ , / 3  E~ + - -  (40) 

4 2ro 2 

where cz = f, i or m. The interphase is given a Poisson 
ratio equal to the matrix Poisson ratio vi = Vm = 0.1, 
corresponding to the following values for the c-con- 
stants Cm = Em/7 and c~ = Ei/7, which ensures that the 
Poisson ratio of the interphase or the matrix does not 
vary with its respective elastic modulus. Polymer ma- 
trices have a Poisson ratio around 0.3 while glass has 
a Poisson ratio around 0.2. Since the fibre considered 
in this work is unidimensional, i.e. it consists of 
a single line of nodes, we assumed [42] that it has 
a null Poisson ratio. The matrix material was there- 
fore given a Poisson ratio of 0.1 in order to achieve the 
same relative Poisson ratio V m -  Vf found in a real 
system (i.e. glass-epoxy). However, it will be shown 
later that this unidimensional fibre might have an 
effective diameter d~' of a~/14.9, and that unidimen- 
sional fibre probably has a Poisson ratio closer to 
one-third than zero. Periodic boundary conditions are 
applied in the direction of applied tensile strain (the 
x axis), while free boundary conditions are applied in 
the y direction. The system is relaxed to its minimal 
energy configuration upon application of a uniform 
strain with the help of a conjugate gradient technique 
[42]. The model incorporates a fracture criterion via 
the cohesive energy parameters, in which a bond is 

3.1. Interphase elastic modulus 
Fig. 5 displays a plot of critical aspect ratio Sc = lc/df 
versus Ef/Em for Uf/Um = 2 for a perfect interphase 
Ei = Em and Ui = U m ,  where dr is the fibre diameter. 
Fig. 5 is taken from our earlier paper [42]. We point 
out the two divergences in the critical aspect ratio, one 
at low values of Ef/Em, and the other for large values 
of Ef/Em, as well as the minimum critical aspect ratio 
at a value of Er/Em between 8 and 14. We refer to the 
value of Ef/Em at the location of a minimum in the 
critical aspect ratio as the "opt imum fibre-matrix 
modulus ratio" (OFMR). The divergence to the left 
of the OFMR,  theoretically determined to be at 
Ef/Em = Uf/Um, is explained by the fact that for a per- 
fect elast i~brit t le system, it is impossible to obtain 
simultaneous failure of the matrix and fibre for a finite 
fibre length if Er/Em <- Uf/Um. The divergence to the 
right of the O F M R  is due to the fact that the fibre 
failure stress cyf* = ( 2 E f  Uf) 1/2 increases a s  E f  increases, 
as well as the shear stresses generated at the fibre tips, 
hence one needs increasingly longer fibres in order to 
obtain simultaneous failure of the fibre and the matrix. 
Fibres whose aspect ratio is above the critical aspect 
ratio line in Fig. 5 are supercritical, and break well 
before the matrix, while fibres whose aspect ratio is 
below the critical aspect ratio line are subcritical, in 
which case the matrix fails well before the fibre. 

The five symbols in Fig. 5 represent the five systems 
selected in our study of the influence of interphase 
modulus on the critical aspect ratio, namely 
E f / E  m = 4 (open triangle), 6 (open square) 9 (full 
circle), 22.2 (full triangle) and 31.1 (full square). The 
cohesive energy parameters have been chosen as 
above: Uf = 2Urn and Ui = Urn. Fig. 6 illustrates the 
resulting critical aspect ratio dependence for  the five 
chosen systems. All curves possess the same qualitat- 
ive shape as in Fig. 5: divergence at both low and high 
values of the elastic modulus ratio Ef/E i as well as 
a minimum critical aspect ratio at a given Value of 
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Figure 6 Critical aspect ratio So as a function of fibre-interphase 
modulus ratio Ef/Ei = (A )4,([::],...)6,(O,---)9,(~,----) 
22.2 and ( I ,  - - .  ) 31.1. The y axis is in units of 1/d'( = 14.9/a~, 
where a~ is a unit length in the x direction. The lines do not 
represent a fit, but are added to help visualize the data. 

EllEn, the "opt imum fibre-interphase modulus ratio" 
(OFIR). For  Ef/Em = 4 the O F I R  is roughly 9, con- 
sistent with the O F M R  for the single fibre with a per- 
fect interphase shown in Fig. 5. The value of E~ at the 
O F I R  moves towards E m a s  the fibre elastic modulus 
increases. For  the cases Ef/Em = 6 and 9, the O F I R  is 
between 9 and 13.5 for the former and between 10 and 
13.5 for the latter. Those values are consistent with the 
location of the O F M R  in Fig. 5. As the fibre becomes 
increasingly stiff, the O F I R  remains at E~ = E m due to 
large stress amplification in the matrix for E~ > Em 
(this will be explained in more detail below). The 
divergence in the critical aspect ratio to the right of the 
O F I R  in all five curves of Fig. 6 can be understood as 
follows: as Ei decreases, the load transfer between the 

matrix and the fibre is compromised, i.e. the inter- 
phase accommodates the applied strain, and the fibre 
sees very little strain (or equivalently stress) transfer- 
red. On the other hand, the divergence in the critical 
aspect ratio to the left of the O F I R  is due to the 
strain/stress amplification in the matrix bonds caused 
by the stiffer interphase (Ei > E m )  and the fibre, such 
that one needs an increasingly longer fibre to ensure 
simultaneous failure of the fibre and the matrix. In 
fact, for high-modulus fibres, a stiffinterphase Ei > Em 

always increases load transfer, but embrittles the com- 
posite material: the strain at failure is much less than 
for the case El = Era. This accounts for the fact that 
minimum critical aspect ratio in Fig. 6 remains at 
E i = E m for the systems with EriE m = 22.2 or 31.1. 

Fig. 7a illustrates the tensile stress along the fibre 
for a system with a fibre-matrix modulus ratio of 31.1 
and a fibre length L = 32 (close to the critical length 
for Ei = Em) at a constant applied strain of 1.44%. 
The fibre-matrix cohesive energy ratio Uf/Um remains 
equal to 2. In this particular case, no bonds other than 
the end bonds b5 are allowed to break. The perfect 
interphase (Ei = Em,  short dashed line) is compared to 
a stiffer interphase (E~ = 2Em, dotted line): for the 
same applied strain, the load transfer to the fibre is 
slightly better for the stiffer interphase. The solid line 
represents the fibre failure stress c~* = ( 2 E f U f )  U2. 

Fig. 7b is a plot of the energy stored in the bonds along 
the row of nodes above the fibre (all interphase tensile 
bonds between the two b4 bonds in Fig. 2, including 
the matrix bonds b4 themselves). The short dashed 
line represents E~ = Em while the dotted line repres- 
ents E~ = 2Em, and the horizontal solid line represents 
the matrix and the interphase failure threshold 
U~ = U~,. The energy stored in bond b4 (located at 
z = _+ 17) is close to failure for the case of the perfect 
interphase, while it is well above failure for the case of 
the stiffer interphase. If the bonds had been allowed to 
break, bond b4 would have failed at a much lower 
value of the applied strain, c~,p~ _~ 1.3%, decreasing the 
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Figure 7 (a) Tensile stress profile along the fibre (same as Fig. 3a) for a system with Ef/Em - 31.1 and Ur = 2, fibre length L = 32 at an 
applied strain eap~ = 1.44%, for ( - - - )  Ei = E,, and ( ' " )  2Era; ( ) fibre failure threshold. (b) Plot of the energy U as a function of z (see Fig. 
3a) stored in the tensile bonds  along the row of nodes above the fibre for ( - - - )  E~ = E m  and (' "') 2Era; ( ) matrix and interphase failure 
threshold U ~ -  Urn- 
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amount  of stress transferred to the fibre at the failure 
point. One needs a longer fibre in order to achieve 
simultaneous failure of the fibre mid-point and the 
matrix bond b4, hence the critical length increases for 
Ei > E m .  The results of Fig. 7a and b suggest that 
a study of load transfer should not be dissociated from 
a failure criterion because the fibre stress level itself is 
of limited utility. Also note that as Ei tends towards 
El, we are simply dealing with a thicker fibre (in Fig. 
2 that thicker fibre would include the original five fibre 
nodes plus the circled nodes on the rows immediately 
above and below the fibre nodes; hence the fibre has 
a diameter df  = 2a~ = x/3af~). Hence, a s  E f / E  i -+ 1, 
the new fibre has a diameter several times greater than 
the original fibre diameter and one should therefore 
expect a fast divergence in Fig. 6 as Ef/Ei  ~ 1. 

It is difficult to give an estimate of the unidimen- 
sional fibre diameter (other than using the area per 
bond which yields d~' = a~ /2x /3  ), since the model 
used is coarse-grained, i.e. information concerning 
phenomena occurring at length scales less than a cer- 
tain cutoff length is lost. At that particular length 
scale, a fibre with an otherwise well-defined diameter 
may appear  to be unidimensional. We expect the uni- 
dimensional fibre diameter to be roughly an order of 
magnitude smaller than the thicker fibre diameter 
df/d'( ~ 10. We attempt to estimate dr~d`( with the help 
of Fig. 8, which is a plot of the inverse fibre diameter 
1/d'~, where w represents the unidimensional fibre, as 
a function of Ef/Em. The solid line represents the 
inverse fibre diameter as determined by the average of 
the data, l id '(  = 14.9/af~ The error bars come from 
the discrete nature of the simulation model, where 
critical lengths are determined up to a precision of one 
lattice constant. The inverse fibre diameter is obtained 
from the assumption of constant aspect ratio, i.e. 
lW/d`( = lc/df, where lc/df is the critical aspect ratio 
taken from our earlier work [42] for a fibre of dia- 
meter de = 2a{~ = 31/2a~. A Poisson ratio close to 0.3 
was chosen for the thick fibre, and this means that the 
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Figure 8 Plot  of the inverse whisker- l ike  fibre d iamete r  lid'( as 
a function of El~Era. The hor izonta l  line traced th rough  the da ta  
represents  the average  inverse fibre diameter .  The er ror  bars  are due 

to the discrete na ture  of the lattice: cr i t ical  lengths  are measured  
with a precis ion of + 1 lat t ice constant .  

constant cr (~ - f) is small, i.e. cr ~ 0. In the limiting 
case cf = 0, the fibre Poisson ratio is 1/3 from Equa- 
tion 40 and the energy stored in the fibre bonds comes 
uniquely from the two-body term in the Hamiltonian 
(Equation 39). By selecting a constant cf close to zero, 
one ensures in this way that the main contribution to 
the fracture energy of the thick fibre is from the two- 
body term in Equation 39 which causes the tensile 
bond at the fibre mid-point to fail, so one might be 
justified to compare this fibre to the unidimensional 
fibre (i.e. using lW/d`( = It~dr), where 100% of the frac- 
ture energy is due to the two-body term in Equation 
39. According to Fig. 8, the interphase diameter depic- 
ted in Fig. 2 is roughly df/d'( = 14.9/af~(31/2a~) = 25 
times greater than the fibre diameter d~'. Using the 
expression for d~ obtained from the area per bond, we 
obtain df /d ' (  = 2x/3/af~.  x/3a~ = 6. We therefore 
estimate that the ratio of the interphase diameter to 
that of the unidimensional fibre probably lies: in the 
range 6 < df/d~ < 25. These figures represent 
a rough estimate only. 

In order to understand how the interphase cohesive 
energy affects the overall properties of the composite, 
one needs to understand the various failure modes 
present. Before we proceed in the following section to 
study the influence of interphase cohesive energy, we 
identify the different modes of failure in the five se- 
lected systems. We refer the reader to the bonds as 
labelled in Fig. 2. 

3. 1.1. Systems with a fibre-matrix modulus 
ratio less than the OFMR 

For E f / g  m = 4, failure of composites to the right of the 
OFIR  (OFIR ~_ OFMR)  is initiated in the matrix 
bond b2 carrying tensile stress. To the left and around 
the OFIR,  failure is initiated in the interphase bond b 1 
carrying tensile stress. This is to be expected, since the 
load transfer is not very efficient in composites with 
a low value of Ef/Em. Consequently, large tensile stres- 
ses remain for the matrix to bear (note that the energy 
depends on the second power of the stress), especially 
at low values of the interphase modulus Ei, where 
stress transfer is even worse. By lowering the inter- 
phase modulus Ei, one is in fact decreasing the 
amount  of coupling between the matrix and the fibre. 
In the limit E~--, 0, matrix and fibre are completely 
decoupled. As E~ increases, the load transfer becomes 
more efficient. More stress is therefore shifted from the 
matrix to both the fibre and the interphase as matrix 
and fibre are more strongly coupled, and the location 
of failure moves from the matrix tensile bond b2 to the 
interphase tensile bond bl (Fig. 9a). 

3. 1.2. Systems with a fibre-matrix modulus 
ratio in the vicinity of the OFMR 

For  E f / E  m = 6, failure of composites to the right of the 
O F I R  (13.5 < El~El < 54) is initiated in the interphase 
bond b3 carrying shear stress. The failure of com- 
posites with Ef/Ei around the OFIR  (9 < Ef/Ei 
_< 13.5, and consistent with the location of the O F M R  

in Fig. 5) is initiated in the interphase bond bl carry- 
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Figure 9 Sketch of failure regions as a function of the fibre-inter- 
phase modulus ratio Er/E~. (a) The curve illustrates the critical 
aspect ratio for a low fibre matrix modulus ratio. The solid vertical 
line at Ef/E~ = O F M R  represents the boundary between region II 
(interphase failure, initiated in bond bl of Fig. 2) and region 
I (matrix failure, initiated in bond b2). The vertical dashed line 
represents the boundary between region II and region III. The exact 
location of this boundary is not known since region III is hypo- 
thesized in the limit Er/E~ ---, 1. (b) The solid curve illustrates the 
critical aspect ratio for a fibre-matrix modulus ratio close to the 
OFMR. The solid vertical line at Ef/E~ < O F M R  represents 
the boundary between region III (matrix failure initiated in bond b4 
of Fig. 2) and region II (interphase failure initiated in bond bl). The 
vertical dot-dashed line located at Er/E~ > O F M R  within region II 
represents the boundary between failure initiated in the interphase 
bond bl and failure initiated in the interphase bond b3. The vertical 
dashed line represents the boundary between region II and region I. 
The exact location of this boundary is not exactly known, since 
region I is hypothesized in the limit Ef/E i ---; oo. (c) The solid curve 
illustrates the critical aspect ratio for a high fibre-matrix modulus 
ratio. The solid vertical line located at Er/Ei = Ef/Em represents the 
boundary between region III (matrix failure initiated in bond b4) 
and region II (interphase failure initiated in bond b3). The vertical 
dashed line represents the boundary between region II and region I. 
This boundary is not well defined for the same reason as in (b). 

ing tensile stress, and to the left to the OFIR 
(Ef/Ei < 9) in the matrix bond b4 carrying tensile 
stress. 

For Ef/Em = 9, failure of composites to the right of 
the OFIR (13.5 < Er/Ei < 81) (note that the upper 
bond on El/El is greater than in the preceding case) is 
initiated again in the interphase bond b3 carrying 
shear stress. Failure of composites with Er/Ei around 
the OFIR (10 < Ef/E~ < 13.5, and consistent with the 
location of the O F MR in Fig. 5) is initiated in the 
interphase bond bl carrying tensile stress, and failure 
of composites to the left of the OFIR (Ef/Ei <_ 10) is 
initiated in the matrix bond b4 carrying a tensile 
stress. 

The failure mechanisms for Ef/E m = 6 and 9 are 
very similar (Fig. 9b). The stress transfer is better as  Ef  

increases, which implies that a smaller level of tensile 
stress is left for the matrix to carry. The locus of failure 
consequently shifts from the matrix (bond b2) to the 
interphase region (either bond b3 or bl), unless E i is 
extremely compliant. One can imagine the case in 
which the interphase elastic modulus E~ is sufficiently 
compliant (E~-*0) such that fibre and matrix are 
almost totally decoupled. The efficiency of load trans- 
fer is reduced to such an extent that the locus of failure 
is expected to be pushed back into the matrix (region 
I in Fig. 9b). The simulation results show two different 
failure modes occurring inside the interphase region. 
At low values of Ei, the stiff fibre causes a large strain 
concentration in bond b3, in the sense that 
the more compliant interphase bonds accommodate 
the applied strain and as explained above, the 
matrix-fibre coupling is not optimal. However, the 
matrix does not carry such a large stress level com- 
pared to the previous case of a low fibre-matrix 
modulus ratio. Hence the interphase shear bond b3 
always breaks before the matrix tensile bond b2. 

The coupling between fibre and matrix tends to- 
wards optimal conditions as the interphase stiffens. As 
this coupling increases, the location of failure has to 
shift eventually from the interphase shear bond b3 to 
the matrix tensile bond b4. However, in the present 
case of a relatively compliant fibre (6 < El~Era <_ 9), 
the failure location does not directly shift from bond 
b3 to bond b4. There exists a range of values for the 
interphase elastic modulus (here 9 _< Ef/E~ <_ 13.5) for 
which stress builds up more rapidly in the interphase 
tensile bond bl than in the interphase shear bond b3 
or the matrix tensile bond b4. Upon application of 
additional strain, bond bl will accommodate a larger 
part of the strain compared to the bonds b4 and b3 for 
the following reason: the compliance of bond b l is 
greater than the compliance of bond b4 and bond bl is 
parallel to the load while bond b3 is not. Furthermore, 
at this stage the compliance of the interphase is sup- 
posedly low enough so that the fibre no longer causes 
strain amplification in the interphase shear bond b3. 
This "b l "  mode of failure plays a role only in com- 
posites whose fibre-matrix modulus ratio is close to or 
equal to the OFMR (see Fig. 9b). As the modulus of 
the fibre increases further, failure is expected to shift 
directly from the interphase shear bond b3 to the 
matrix ~.~ensile bond b4 (Fig. 9c). 
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3. 1.3. Large elastic modulus  ratio 
For Ef/Em = 22.2, failure of composites with Ei < Em 
is initiated in the interphase bond b3 carrying shear 
stress while failure of composites with E~ >Em is ini- 
tiated in the matrix bond b4 carrying tensile stress. As 
discussed above, the location of failure shifts directly 
from the interphase shear bond b3 to the matrix 
tensile bond b4 and no more failure is initiated in the 
interphase tensile bond b l (see Fig. 9c). 

For Ef /E, I=31.1 ,  failure of composites with 
Ei _< E= is initiated in the interphase bond b3 carrying 
a shear stress while failure in composites with E~ > E m 

is initiated in the matrix bond b4 carrying tensile 
stress. The fibre is now stiff enough so that the strain 
'amplification in bond b3 can only be reduced if 
E. i = E m (see Figs 7a and b). For Ei > Era ,  failure is 
directly shifted from bond b3 to b4 (see Fig. 9c). 

The results of Fig. 6 for the critical aspect ratio 
dependence on interphase modulus show that a sub- 
stantial decrease in critical aspect ratio is achieved for 
the composites whose fibre-matrix modulus ratio is 
less than the OFMR in Fig. 5. A minimum critical 
aspect ratio is found for a fibre-interphase modulus 
ratio close to or equal to the OFMR itself (compare 
the minimum critical aspect ratio found in Fig. 6 with 
the results for the perfect interphase Ej = Em in Fig. 5). 
A similar decrease in the critical aspect ratio cannot be 
achieved for composites whose fibre-matrix modulus 
ratio is greater than the OFMR in Fig. 5, in which case 
the critical aspect ratio is minimum for the perfect 
interphase E f / E  i = E r I E  m. 

The different modes of failures identified can be 
organized into three different regions as shown in 
Fig. 9. Fig. 9a is a sketch of the various failure modes 
encountered as E~ is varied for a composite with 
a fibre-matrix modulus ratio much less than the 
OFMR (for instance, Ef/Em = 4 and the OFMR is in 
the vicinity of 8 to 14 for Uf/Um = 2). Failure for 
composites located in region I occurs in the matrix 
(bond b2) while failure in region II occurs in the 
interphase (bond bl). The boundary between regions 
I and II is located at Ee/E~ ~-OFMR. Region III 
should be encountered as the interphase modulus is 
increased, since we know that in the limit Ei ~ El, we 
recover a thicker fibre with a perfect interphase and 
failure has to occur in the matrix. Fig. 9b sketches the 
failure modes for a composite whose fibre-matrix 
modulus ratio is close to, but not greater than the 
OFMR (in this case, 6 <_ E f / E  m < 9). We expect region 
I to recede as regions lI and III are expanding to the 
right. Failure in region I would presumably occur in 
the matrix, for E~ low enough; failure in region II 
occurs in the interphase (bonds b3 and bl) while 
failure in region III occurs in the matrix (bond b4). 
The boundary between regions I and II is not well 
defined, but the boundary between regions II and III 
is located at E r I E  i <_ OFMR, i.e. E f / E  i --- 6. There is 
a transition in the location of failure inside the inter- 
phase itself: from shear bond b3, where Ef/Ej > 
OFMR, to tensile bond bl, where Ef/Ei "~ OFMR. In 
particular, this failure information can be important in 
the case where anisotropies are introduced in the 
interphase region. Fig. 9c sketches the failure modes 

for the composites with a fibre-matrix modulus ratio 
greater than the OFMR. Failure in region I occurs in 
the matrix. Region I is probably receding even further 
to the right. In region II, failure occurs in the inter- 
phase (bond b3), while in region III, failure occurs in 
the matrix (bond b4). There is no longer a failure 
transition from bond b3 to bl inside the interphase 
itself. The boundary between regions I and II is nnhn- 
portant, while the boundary between regions lI and 
III occurs at E~ = Era. 

We expect the location of the boundaries between 
the different modes of failure in Fig. 9a and b to vary 
with the ratio of the cohesive energies Uf/Um, since the 
OFMR itself is a function of the cohesive energy ratio 
1-42]. However, the boundary Ei = Em in Fig. 9c does 
not contain any cohesive energy ratio dependence, 
and it is important to verify that it is truly independent 
of Uf/Um. Fig. 10 shows the critical aspect ratio as 
a function of Ef/E~ for a system with Er/Em = 31.1, 
Uf/Um = 15 (full triangles) and 2.5 (full squares) 
compared to Uf/Um = 2 (full circles). The OFIR does 
not vary significantly with cohesive energy ratio 
(Er/Ei ~ 28-30), but the flatness of the critical aspect 
ratio curve as well as the minimum critical aspect ratio 
itself are strongly influenced by the cohesive energy 
ratio. We find that for all three selected values of 
Uf/Um failure is initiated in the interphase shear bond 
b3 for Ef/E~ > Ef/Em, while failure is initiated in the 
matrix tensile bond b4 for Ef/Ei < Ef/E=. The failure 
analysis presented in Fig. 9c is therefore independent 
of the cohesive energy ratio Uf/Um. 

The above failure analysis provides useful informa- 
tion, especially for composites whose fibre~matrix 
modulus ratio is greater than the OFMR. This cat- 
egory encompasses the polymer composites, which are 
of considerable interest. Our computer results show 
that for these composites, with an interphase diameter 
several times the fibre diameter, there is no advantage 
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Figure 10 Plot of the critical aspect ratio Sc versus f ibre-interphase 
modulus  ratio Er/E~ for the system Ef/Em = 31.1 for the following 
values of the fibre-matrix cohesive energy ratio: Uf/Um = ( A )  1.5, 
( 0 )  2 and (111) 2.5. The y axis is in units of 1/d~ = 14.9/a~, where 
af~ is a unit length in the x direction. The solid lines do not represent 
a fit, but are added to help visualize the data. 
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in terms of a significant decrease in the critical aspect 
ratio to be gained by a proper choice of the interphase 
modulus alone. The above failure analysis suggests an 
alternate way to decrease the critical aspect ratio. The 
interphase modulus may be chosen such that failure 
shifts from the matrix to the interphase, and then 
another parameter can be brought into play: the inter- 
phase cohesive energy. The following section shows 
computer results for the dependence of the critical 
aspect ratio on the interphase cohesive energy. 

3.2. Interphase cohesive energy 
It is important to mention that one should keep in 
mind thai a constant bond cohesive energy Us gener- 
ally implies a failure stress which increases with the 
bond elastic modulus and a failure strain which de- 
creases with the bond elastic modulus. Increasing the 
cohesive energy of a bond implies increasing its stress 
and strain at failure, hence in this work toughness and 
strength are directly related to one another. For in- 
stance, a bond carrying tensile stress implies a (tensile) 
failure stress cy* which varies as the square root of the 
bond elastic modulus E=, and varying the cohesive 
energy of the bond itself implies varying the (tensile) 
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failure stress as the square root of the cohesive energy 
for a fixed bond elastic modulus, i.e. ~* = (2E~U~) 1/2 
and the failure strain e* = (2U~/E~) 1/2. In order to 
study the influence of interphase cohesive energy, we 
selected three out of the five systems chosen in the 
previous section namely, El~Era = 4 as an example of 
low fibre-matrix modulus ratio, Ef/E m = 6 as an 
example of a fibre matrix modulus ratio in the vicinity 
of the OFMR, and El~Era = 31.1 as an example of high 
fibre-matrix modulus ratio. Fig. 11 displays the crit- 
ical aspect ratio versus fibre-interphase modulus ratio 
Ef/E~ for these three cases for five different values of 
the interphase cohesive energy, Ui = 0.8Urn, 0 . 9 U r n ,  

Um, 1.2Urn and 1.5Urn. Keeping in mind that the 
regions of interphase failure in Fig. 9a-c occur for 
Ef/Ei <_ OFMR, Ef/Em >_ OFMR (with the OFMR 
between the values 8 and 14, according to Fig. 5) and 
Ef/Ei > El~Era, respectively, the results in Fig. l l a - c  
demonstrate the sensitivity of the critical aspect ratio 
to the interphase cohesive energy when the fibre-inter- 
phase modulus ratio is in the region where interphase 
failure occurs (region II in Fig. 9a c). 

The critical aspect ratio in Fig. t la -c  decreases as 
the interphase cohesive energy U~ increases. However, 
the interphase cohesive energy has little or no effect for 
a fibre-interphase ratio Ef/E~ for which failure occurs 
in the matrix region: regions I and III in Fig. 9a-c. 
Note that the case Ef/Em = 31.1 in Fig. l l c  presents 
a peculiarity: the critical aspect ratio depends inverse- 
ly on the interphase cohesive energy in the region of 
matrix failure, i.e. for Ef/Ei < Ef/Em. This behaviour 
can be explained by the fact that upon fracture of 
bonds b5 (see Fig. 2), a greater amount of stress is 
redistributed in the neighbouring bonds for the case of 
a high-modulus fibre with a high-modulus interphase 
(El~Era large and Er/E~ low) than for the case of a more 

Figure 11 Plots of the critical aspect  ratio Sc versus f ibre-interphase 
m o d u l u s  ratio Ef/Ei for Ui = ( ~x, ) 0.8 U r n  , ( [ ~ ,  " " ' )  0.9Urn, ( O,  
- - - )  Urn, ( A ,  - - )  1.2Urn and  (m ,  " ) 1.5Urn; (a) is for 
a f ibre-matr ix  m o d u l u s  ratio Ef/Ern = 4, (b) for El~Era = 6 and  
(c) for Ef/E m = 31.1. The  y axis is in uni ts  of 1~dr = 14.9/a~, where 
a~ is a uni t  length in the x direction. The  lines do not  represent  a fit, 
but  are added  to help visualize the data.  
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compliant fibre (El~Era lower). Moreover, it is also 
observed in the computer simulations that the debond- 
ing of high-modulus fibres (failure of bonds b5) with 
interphases which possess a high modulus E~ and 
cohesive energy Ui causes immediate failure in the 
(brittle) composite, at the same value of applied strain. 
This is not the case for the more compliant fibres 
where the fibre always debonds well before composite 
failure�9 Hence the fibre length must be increased for 
systems with a high value of Ef/E m (high-modulus 
fibres), a high value of U~ (high interphase toughness 
and strength) and a low value of Ef/E~ (high-modulus 
interphase) so that the fibre is able to break simultan- 
eously with the end bonds b5. The inverse is true for 
the same systems with a lower interphase cohesive 
energy. In this case, decreasing the interphase cohesive 
energy allows the end bonds b5 to break sooner, and 
hence the stress redistribution to take place sooner. 
This explains the slight decreases in critical aspect 
ratio observed for a decreasing interphase cohesive 
energy. 

Fig. 12 shows the composite strain at failure e* as 
a function of fibre interphase modulus ratio EUE~ for 
the three cases�9 The interphase cohesive energy is the 
same as in Fig. 11. Fig. 12 is strongly correlated with 
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Fig. 11, where one can see that the strain at failure 
increases with interphase cohesive energy for 
a fibre interphase ratio such that failure occurs in 
the interphase according to Fig. 9: Et/Ei <_ O F M R  
for Fig. 12a, Er/Ei>_ O F M R  for Fig. 12b and 
Er/E i >_ Ef /E m for Fig. 12c. 

The opt imum conditions for critical aspect ratio 
and composi te  strain at failure for fibre systems whose 
fibre-matrix modulus ratio is low are obtained for an 
interphase whose modulus is such that the fibre-inter- 
phase modulus ratio EUE i is close or equal to the 
O F M R  in Fig. 5. This gain in load transfer efficiency 
might constitute an alternative to increasing the 
toughness of metal-matrix composites. The stress level 
in the matrix is reduced, as an increased amount  of 
load is transferred to the fibre, for an interphase 
modulus Ei - EUOFMR, compared to an interphase 
with modulus E i ~ > E f / O F M R  (i.e. Ei =Era) or 
Ej < EUOFMR. This increased load transfer effici- 
ency as E~--, E f /OFMR will cause the yield point of 
the metal matrix to occur at a larger value of applied 
strain (e > eyield): as the matrix stress level is reduced 
due to an increased load transfer efficiency, the matrix 
stress would then reach its yield point for an applied 
strain ~ > ey~e~d. Therefore, this effect may be substan- 
tial enough so that an increased load transfer effici- 
ency might represent a direction worth pursuing in 
order to increase the toughness of certain metal- 
matrix composites. 

The condition Ui > Um only brings in a marginal 
improvement  for composites with Ef/E~ = OFMR.  
The interphase cohesive energy has little effect on 
systems with a ratio Ef/E~ >_ O F M R  (matrix failure). 
However, systems with more compliant interphases 
Ef/E~ < O F M R  (interphase failure) show a significant 
decrease in the critical aspect ratio (up to a factor of 4), 

Figure 12 Plot of the composite strain at failure (c*) versus 
fibre interphase modulus ratio Er/EI for Ui = ( &, ) 0.8 Urn, ( D, 
"'') 0.9Urn, (O, - - - )  Urn, ( i ,  -) 1.2Urn and ( I ,  "~) 1.5Urn; 
(a) is for a fibre-matrix modulus ratio E f / E  m = 4, (b) for Ef/Em = 6 
and (c) for El~Era = 31.1. The y axis is in units of lid'( = 14.9/a~, 
where a6 is a unit length in the x direction. The lines do not 
represent a fit, but are added to help visualize the data. 
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as well as a marginal increase in the composite strain 
at failure. 

The optimum conditions for critical aspect ratio 
and composite strain at failure for a fibre system 
whose fibre-matrix modulus ratio is close or equal to 
the OFMR in Fig. 5 (i.e. 6 _< Ef/E~ <_ 9) are obtained 
for an interphase with a ratio Ef/Ei also close or equal 
to the OF MR  and Ui > Urn. The interphase cohesive 
energy has less effect on the critical length (up to 
a factor of 2.5) but more effect on the composite strain 
at failure compared to the previous case, for systems 
whose ratio Ef/Ei is greater than or equal to the 
OF MR  (interphase failure). One can also note a mar- 
ginal improvement in both the critical aspect ratio and 
the composite strain at failure as the interphase cohe- 
sive energy is increased for systems with Ef/Ei < 
OFMR (matrix failure). 

The optimum conditions for critical aspect ratio 
and composite strain at failure for fibre systems whose 
fibre-matrix modulus is high is obtained for an inter- 
phase whose modulus Ei is less than the matrix 
modulus Em and Uv> U m .  Tbese composites are sen- 
sitive to interpbase cohesive energy in the region 
Ei _< Em (interphase failure), and the improvement in 
the critical length is comparable if not slightly less 
than in the previous case (up to a factor of 2). The 
composite strain at failure increases with interphase 
cohesive energy, especially in the region E~ < Era, and 
the improvement is better than in the two previous 
c a s e s .  

The trends in the above results can be summarized 
as follows. Load transfer in systems with low EriE m is 
not very efficient, and decreasing the interphase 
modulus E~ can substantially improve the load trans- 
fer and the critical length. Increasing the interphase 
cohesive energy Ui has the same effect on the critical 
length: both factors Ei and U~ act together to decrease 
the critical length. In composites with a high ratio 
Ef/Em, load transfer become worse upon decreasing 
the interphase modulus Ei, and stress amplification 
problems in the matrix prevent increasing the inter- 
phase modulus beyond the matrix modulus. One 
needs to decrease the interphase modulus so that the 
location of failure is shifted into the interphase, conse- 
quently both factors E~ and Ui compete against each 
other. However, the decreasing effect on the critical 
length of an increased interphase cohesive energy 
dominates. The effect of interphase cohesive energy on 
composite strain at failure is more important for sys- 
tems with a high modulus ratio Ef/E m than for systems 
with a low modulus ratio, because a composite with 
a low value of Ef/Ern has a strain at failure already 
close to the failure strain of the pure matrix and any 
additional gains are only marginal. In contrast, a high 
elastic modulus mismatch considerably embrittles the 
composite ~* ,~ ~* and in this- case the gain in com- 
posite strain at failure due to increased interphase 
toughness can be quite substantial. 

The results from the computer model suggest 
a strategy for improving the performance of composite 
materials. This strategy for an improved critical aspect 
ratio generally favours an interphase modulus less 
than the matrix modulus or at most equal, for ce- 
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ramic-matrix and metal-matrix composites. Further 
improvement can be obtained by tailoring the inter- 
phase and providing it with additional energy-absorb- 
ing mechanisms. In addition, for polymer composites, 
decreasing the interphase modulus for interphases 
such that di > df will be successful in optimizing the 
critical aspect ratio only if the interphase region (for 
di >> dr) is further tailored as to increase its energy 
absorbed at failure. 

3.3. I n t e r p h a s e  t h i c k n e s s  
The above analysis in sections 3.1 and 3.2 is for an 
interphase whose diameter is much greater than the 
fibre diameter: we estimated d~/df to be approx~a te ly  
between 6 and 25 (see section 3.1). Theorcaris and 
Papanicolaou [45] showed that the interphase pos, 
sesses a considerable thickness. This interphase may 
be due to various factors such as chemical reactions, 
or manufacturing processes occurring at the fabrica- 
tion stage [46]. For  instance, in many metal-matrix 
composite systems, the matrix chemically interacts 
with the fibre, producing a mesophase whose thick- 
ness generally depends on the cooling rate (e.g. [47]). 
An interphase whose thickness is much larger than the 
fibre thickness is not unreasonable. In polypropylene 
systems, transcrystaltine interphases with diameter up 
to seven times the fibre diameter can be grown [48]. 
This last section proposes to estimate the effect of 
interphase thickness on the results reported in sections 
3.1 and 3.2. 

Fig. 13 shows the critical aspect ratio versus Ef/Ei 
for an interphase thickness di/df ~ 12-50, i.e. double 
the size of the interphase considered in sections 3.1 
and 3.2 for the fibre-matrix systems Ef/Em = 4 (full 
triangles, dotted line) and 31.1 (full squares, short 
dashed line). The cohesive energy ratio Uf/Um is 2 and 
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Figure 13 Plot of the critical aspect ratio Sc as a function of the 
fibre-interphase modulus ratio Ef/Ei with Uf/Um = 2, U i =Um and 
dl/d f ~- 12-50, forEf/E m (A . . . .  ) 4 a n d  (B,  ) 31.1. T h e d a t a  of 
Fig. 6 are also shown for compar ison:  Ef/Em = (Q)) 4 and  ( 0 )  31.1. 
The y axis is in uni ts  of 1~dr = 14.9/a~, where a~ is a unit  length in 
the x direction.  The lines do not  represent  a fit, bu t  are added  to help 
visualize the data.  



Ui = Urn in both systems. We also plot the critical 
aspect ratio measured in section 3.1 (Fig. 6) for 
Ef/Em = 4 (open circles) and for El~Era = 31.1 (full 
circles) joined by solid lines as a comparison. Accord- 
ing to Fig. 13, we make the following two obser- 
vations: 

(i) A thick interphase with a modulus weaker than 
the matrix modulus eventually decreases the eff• 
of load transfer for composites with a low fibre matrix 
modulus ratio. The O F I R  (which also represents the 
boundary between matrix and interphase failure) is 
shifted away from the OFMR,  towards E f / E  m. 

(ii) Similarly, a thick interphase also reduces load 
transfer efficiency for composites with a high 
fibre-matrix modulus ratio and an interphase whose 
modulus is less than the matrix modulus (i.e. Ef/E~ 
large). However, the thick interphase seems to modify 
the load transfer efficiency and failure mode for com- 
posites with interphases such that Ef/Ei  < El~Era. The 
critical aspect ratio curve to the left-hand side of 
Er/Ej = E f /E  m flattens considerably and the location 
of failure shifts from the interphase shear bond b3 to 
the interphase tensile bond bl  instead of the matrix 
tensile bond b4 (see section 3.2). Considering the fact 
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that the strain at failure is higher for the interphase 
di/df ~ - 1 2 - 5 0  than the interphase di/df ~ - 6 - 2 5 ,  it 
seems plausible to assume that the smaller critical 
length found in Fig. 13 for Ei > Em is due to the fact 
that a thicker interphase smooths out the stress con- 
centrations rather than improving the load transfer 
efficiency. Fig. 14a is a plot of the tensile stress profile 
along the fibre measured for an iriterphase modulus 
Ei = 2.2Era, a fibre matrix modulus ratio El~Era 
= 31.1 and a fibre length L = 33 at 1.32% applied 

strain. The dotted line is for the interphase with 
di/df ~ 6-25 while the short dashed line is for the 
interphase with di/dr ~ 12-50. The solid line repres- 
ents the fibre failure stress cy* = (2El Uf) 1/2. Fig. 14a 
shows that the stress transfer is not significantly differ- 
ent (slightly reduced) for the case of the thicker inter- 
phase di/df ~- 12-50. 

Fig. 14b shows the tensile stress profile along the 
first row above the fibre (interphase bonds between 
the matrix bonds b4 on Fig. 2 including the matrix 
bonds b4 themselves). The dotted line is for the inter- 
phase d~/dr ~- 6-25 while the dot-shor t  dashed line is 
for the interphase di/df ~- 12- 50. Fig. 14b also shows 
the tensile stress profile along the second row above 
the fibre: all matrix bonds between the bonds b2 in 
Fig. 2, including the bonds b2 themselves (matrix) pIus 
two matrix bonds to the right of the rightmost bond 
b2 and to the left of the leftmost bond b2 for 
d i / d  f ~- 10-25 (short dashed line), and all interphase 
bonds between the two bonds b2 in Fig. 2, including 
the bonds b2 themselves (interphase) plus two matrix 
bonds to the right of the rightmost bond b2 and to the 
left of the leftmost bond b2 for dl/df ~- 12-50 (solid 

Figure 14 (a) Tensile stress profile along the fibre (see Fig. 3a) 
for an interphase modulus E~ = 2.2Era, ratios Ef/Em = 31,1 and 
Uf/Um = 2, fibre length L = 32 at 1.32% of applied strain, for 
dl/df ~-(")  6-25 and (---)  12-50; ( - - )  fibre failure threshold. 
(b) Tensile stress profile (or) of the bonds along the first and second 
row of nodes above the fibre, for d~/df ~-(.-., - -  ) 6-25 and 
( , ) 12 50. (c) Plot of the energy, U stored in the tensile 
bonds along the first row of nodes above the fibre, for di/df ~- ('") 
6-25 and (---)  12 50; ( ) failure threshold Ui =Um of the 
matrix and interphase. 
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line). Fig. 14b displays a larger tensile stress ampli- 
fication in the matrix bond b4 (located at z = - 17 
in Fig. 14b) in the case of the thinner interphase. 
A thicker interphase redistributes the stresses so they 
are more uniform: the stress in bonds bl and b4 (first 
row, see Fig. 2) decrease, but the stress in the bonds 
above bl and b4 increase (second row, see Fig. 2). Fig. 
14c is a plot of the energy stored in the bonds along 
the first row above the fibre (same bonds as in Fig. 
14b). The solid line represents the failure threshold of 
the matrix and interphase Ui = Urn. Fig. 14c confirms 
that the matrix tensile bond b4 is slightly above the 
failure point in the case of di/df ~- 6-25 (dotted line), 
while for the thicker interphase, the matrix bond b4 is 
well below the failure threshold (short dashed line). 

Keeping in mind the results of Fig. 1 lc in section 
3.2, i.e. that for composites with a high fibre-matrix 
modulus ratio and a stiff interphase the critical length 
decreases with decreasing interphase cohesive energy, 
it has also been verified that decreasing the cohesive 
energy of the thicker interphases also results in a de- 
crease of the critical length. However, the gain found 
compared to the case Ui = U m  is only marginal. For 
the system Ef/Em = 31.1 with an interphase such that 
Ef/E~ = 23, 17.5, 14 and 9, we obtained a decrease 
in the critical length of less than 10% for 
0.5 _> U i / U r n > 0 . 9 5 .  The critical length increases 
again for Ui/Um < 0.5. We compare this result to the 
right-hand side of Ef/E~ = 31.1 in Fig. l lc, i.e. 
E~ < Em,  where the critical length is decreased by 
a factor of almost 50% upon an increase by a factor of 
1.5 in cohesive energy. The above results seem to 
indicate a trend, i.e. thicker interphases can potentially 
reduce stress amplifications effects, for an interphase 
whose modulus is greater than the matrix modulus. 
On the other hand, it is expected that the thinnel" and 
stiffer is the interphase, the more it increases the stress 
amplification patterns at the fibre end-points. 

4. Summary  and conclusions 
This work studied the effect of interphase modulus 
and cohesive energy on the critical aspect ratio in 
short-fibre composites. The only case where the inter- 
phase modulus has a strong effect on load transfer for 
a constant interphase cohesive energy Ui = Urn is 
found for composites with a low fibre-matrix modulus 
ratio, i.e. metal-matrix and ceramic-matrix com- 
posites, whose modulus ratio is less than the OFMR 
identified in previous work [-42]. The interphase 
modulus for which the minimum critical aspect ratio is 
achieved is such that OFIR = Ef/(Ei)op t = OFMR. 
The value for this optimum interphase modulus (E~)opt 
increases towards the value for the matrix modulus as 
the composite fibre matrix modulus ratio increases 
towards the OFMR. Composites whose fibre-matrix 
modulus ratio is greater than the OFMR, such as the 
polymer composites, display a minimum critical as- 
pect ratio for the perfect interphase E~ = Em and 
Ui = Urn, independently of the fibre matrix cohesive 
energy ratio Uf/Um chosen. This result is explained by 
the fact that, in spite of an increased load transfer 
efficiency with increasing interphase modulus, the 
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stress amplification generated in the matrix causes an 
embrittlement of the composite: the composite fails at 
a value of applied strain much lower than for the 
perfect interphase. 

We identified various failure regions and failure 
modes as a function of the interphase modulus. We 
found a substantial effect of interphase cohesive en- 
ergy on the critical aspect ratio of polymer com- 
posites, for interphase moduli such that failure is 
located in the interphase itself. An effect of cohesive 
energy on critical aspect ratio was also found for 
metal-matrix and ceramic-matrix composites, and this 
effect can be more considerable than for the polymer 
composites. These results suggest a strategy for tailor- 
ing interphases in polymer composites, which favours 
an interphase with a modulus weaker than the matrix, 
but able to sustain a higher strain at failure than the 
matrix (higher cohesive energy). 

We examined the effect of interphase thickness on 
the above results. It was found that a thicker inter- 
phase decreases the critical aspect ratio in polymer 
composites with interphases whose moduli Ei > Era. 

This result is not due to an increased load transfer 
efficiency with interphase thickness, but to the fact 
that a thicker interphase is able to redistribute the 
stress amplifications in the matrix. This finding seems 
to indicate that thin interphases have a potential for 
composite embrittlement, as compared to thicker 
interphases. 

Future work is planned in which the present meth- 
odology can be modified so as to include anisotropies 
in the interphase region and viscous interactions, be- 
fore undertaking the study of multi-fibre composites. 
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